์•ˆ๋…•ํ•˜์„ธ์š” ๐Ÿ‘‹

AngryPark์˜ ๋ธ”๋กœ๊ทธ์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค.

Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations

์ด ๋…ผ๋ฌธ์„ ์ฒ˜์Œ ์•Œ๊ฒŒ ๋œ ๊ฒƒ์€ ์ €๋ฒˆ๋‹ฌ์— Google Brain์—์„œ Tensorflow Recommenders ๋ผ๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๊ณต๊ฐœํ•˜๋ฉด์„œ ์ž…๋‹ˆ๋‹ค. Youtube๋ผ๋Š” ๊ฑฐ๋Œ€ํ•œ ์ถ”์ฒœ์‹œ์Šคํ…œ์„ ์šด์˜ํ•˜๊ณ  ์žˆ๋Š” ๊ตฌ๊ธ€์ด ์ถ”์ฒœ ์‹œ์Šคํ…œ ๊ด€๋ จ ์ฝ”๋“œ๋ฅผ ๊ณต๊ฐœํ•œ๋‹ค๊ณ  ํ•ด์„œ ์ง‘์ค‘ํ•ด์„œ ๋ณด๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ „์ฒด์ ์ธ ๋‚ด์šฉ์€ Tensorflow Blog์— ๋” ์ž์„ธํžˆ ๋‚˜์™€์žˆ์œผ๋‹ˆ ์ฝ์–ด๋ณด์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. TFRS(TensorFlow Recommeners)์˜ ๋ชฉํ‘œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ถ”์ฒœ ํ›„๋ณด๊ตฐ์„ ๋น ๋ฅด๊ณ  ์œ ์—ฐํ•˜๊ฒŒ ๋นŒ๋“œ Item, User, Context ์ •๋ณด๋ฅผ ์ž์œ ๋กญ๊ฒŒ ์‚ฌ์šฉํ•˜๋Š” ๊ตฌ์กฐ ๋‹ค์–‘ํ•œ objective๋ฅผ ๋™์‹œ์— ํ•™์Šตํ•˜๋Š” multi-task ๊ตฌ์กฐ ํ•™์Šต๋œ ๋ชจ๋ธ์€ TF Serving์œผ๋กœ ํšจ์œจ์ ์œผ๋กœ ์„œ๋น™ ์‚ฌ์‹ค ์ฝ”๋“œ ์ž์ฒด๋Š” ํฌ๊ฒŒ ๋‹ค์–‘ํ•œ ๋‚ด์šฉ๋“ค์ด ์žˆ์ง€๋Š” ์•Š์•˜์ง€๋งŒ, ์ œ์ผ ์ธ์ƒ ๊นŠ์—ˆ๋˜ ๊ฒƒ์€ ์ฝ”๋“œ์—์„œ ๊ธฐ๋ณธ ๋ชจ๋ธ๋กœ ์†Œ๊ฐœํ•œ Two Tower Model์ด์—ˆ์Šต๋‹ˆ๋‹ค. ๋ฐ”๋กœ User์™€ Item์„ ์•„์˜ˆ ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šต์‹œ์ผœ ๋งˆ์ง€๋ง‰ ๋‹จ์—์„œ dot product๋กœ๋งŒ click / unclick์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ธ๋ฐ, ์ƒ๊ฐํ•˜๋ฉด ์ƒ๊ฐํ•  ์ˆ˜๋ก ์ข‹์€ ๊ตฌ์กฐ๋”๋ผ๊ตฌ์š”. ๋น„๋ก ํ•™์Šตํ•˜๋Š” ๋‹จ์—์„œ user tower์™€ item tower๊ฐ€ interact ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์—„์ฒญ๋‚œ ์„ฑ๋Šฅ์„ ๋‚ผ ์ง€๋Š” ๋ฏธ์ง€์ˆ˜์˜€์ง€๋งŒ, ๊ตฌ์กฐ ์ž์ฒด๊ฐ€ input feature์˜ ์ œ์•ฝ์ด ์—†์–ด์„œ ๊ฐ€๋Šฅํ•œ feature๋ฅผ ์ž์œ ๋กญ๊ฒŒ ๋„ฃ์„ ์ˆ˜ ์žˆ์—ˆ๊ณ , inferenceํ•  ๋•Œ๋Š” user๋ณ„ embedding, item๋ณ„ embedding์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ฐ€ dot product๋กœ๋งŒ similarity๋ฅผ ๊ณ„์‚ฐํ•ด์„œ servingํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ANN(Approximate Nearest Neighbors) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์™€์˜ ํ˜ธํ™˜์„ฑ๋„ ์ข‹์•„ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ...

10์›” 31, 2020 ยท 5 ๋ถ„ ยท AngryPark

Multi Armed Bandit

์ตœ๊ทผ Recommendar System์— ๋Œ€ํ•ด ๊ณต๋ถ€ํ•˜๋ฉด์„œ, Multi-armed bandit์ด๋ผ๋Š” ๋ถ„์•ผ์— ๋Œ€ํ•ด ๊ณต๋ถ€ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋˜ ์ฐจ์— A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit์„ ๋ฐ”ํƒ•์œผ๋กœ ์ •๋ฆฌํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ๋ชฉ์ฐจ 1. Concept 2. MAB์™€ ๊ธฐ์กด ํ†ต๊ณ„ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋“ค๊ณผ์˜ ์ฐจ์ด์  1. Concept Multi-armed Bandit(์ดํ•˜ MAB)๋ผ๋Š” ๋‹จ์–ด๊ฐ€ ๋‚˜์˜ค๊ฒŒ ๋œ ๋ฐฐ๊ฒฝ์€ ๊ฒœ๋ธ”๋ง์ž…๋‹ˆ๋‹ค. ์–ด๋–ค ์‚ฌ๋žŒ์ด ์ฃผ์–ด์ง„ ์‹œ๊ฐ„์•ˆ์—, ์ˆ˜์ต ๋ถ„ํฌ๊ฐ€ ๋‹ค ๋‹ค๋ฅธ N๊ฐœ์˜ ์Šฌ๋กฏ๋จธ์‹ ์„ ํ†ตํ•ด ์ตœ๋Œ€์˜ ์ˆ˜์ต์„ ์–ป๋Š” ๋ฐฉ๋ฒ•์€ ๋ฌด์—‡์ผ๊นŒ์š”? ๋งŒ์•ฝ ์ œํ•œ๋œ ์‹œ๊ฐ„์— N๊ฐœ์˜ ์Šฌ๋กฏ๋จธ์‹ ๋“ค์„ ๋‹น๊ฒจ์„œ ์ˆ˜์ต์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๊ฐ€ ์ฃผ์–ด์ง„๋‹ค๋ฉด, ์ผ๋‹จ์€ ์–ด๋А ์‹œ๊ฐ„ ๋™์•ˆ์€ ์–ด๋А ์Šฌ๋กฏ ๋จธ์‹ ์ด ๋ˆ์„ ๋งŽ์ด ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ง€ ํƒ์ƒ‰ํ•˜๋Š” ๊ณผ์ •์ด ์žˆ์–ด์•ผ ํ• ๊บผ๊ณ (์ด๋ฅผ Exploration์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค), ๊ทธ ๋‹ค์Œ์—๋Š” ์ž์‹ ์ด ํŒ๋‹จํ•˜๊ธฐ์— ๊ดœ์ฐฎ์€ ์Šฌ๋กฏ ๋จธ์‹ ์„ ๋Œ๋ฆฌ๋ฉด์„œ ์ˆ˜์ต์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค(์ด๋ฅผ Exploitation์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค). ...

2์›” 5, 2019 ยท 4 ๋ถ„ ยท AngryPark

Attention in NLP

์ด ๊ธ€์—์„œ๋Š” attention์ด ๋ฌด์—‡์ธ์ง€, ๋ช‡ ๊ฐœ์˜ ์ค‘์š”ํ•œ ๋…ผ๋ฌธ๋“ค์„ ์ค‘์‹ฌ์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ  NLP์—์„œ ์–ด๋–ป๊ฒŒ ์“ฐ์ด๋Š” ์ง€๋ฅผ ์ •๋ฆฌํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ๋ชฉ์ฐจ ๊ธฐ์กด Encoder-Decoder ๊ตฌ์กฐ์—์„œ ์ƒ๊ธฐ๋Š” ๋ฌธ์ œ Basic Idea Attention Score Functions What Do We Attend To? Multi-headed Attention Transformer ๊ธฐ์กด Encoder-Decoder ๊ตฌ์กฐ์—์„œ ์ƒ๊ธฐ๋Š” ๋ฌธ์ œ Encoder-Decoder ๊ตฌ์กฐ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋ถ€๋ถ„์€ input sequence๋ฅผ ์–ด๋–ป๊ฒŒ vectorํ™”ํ•  ๊ฒƒ์ด๋ƒ๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ NLP์—์„œ๋Š” input sequence์ด๊ฐ€ dynamicํ•  ๊ตฌ์กฐ์ผ ๋•Œ๊ฐ€ ๋งŽ์œผ๋ฏ€๋กœ, ์ด๋ฅผ ๊ณ ์ •๋œ ๊ธธ์ด์˜ ๋ฒกํ„ฐ๋กœ ๋งŒ๋“ค๋ฉด์„œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ฆ‰, โ€œ์•ˆ๋…•โ€ ์ด๋ผ๋Š” ๋ฌธ์žฅ์ด๋‚˜ โ€œ์˜ค๋Š˜ ๋‚ ์”จ๋Š” ์ข‹๋˜๋ฐ ๋ฏธ์„ธ๋จผ์ง€๋Š” ์‹ฌํ•˜๋‹ˆ๊น ๋‚˜๊ฐˆ ๋•Œ ๋งˆ์Šคํฌ ๊ผญ ์“ฐ๊ณ  ๋‚˜๊ฐ€๋ ด!โ€ ์ด๋ผ๋Š” ๋ฌธ์žฅ์ด ๋‹ด๊ณ  ์žˆ๋Š” ์ •๋ณด์˜ ์–‘์ด ๋งค์šฐ ๋‹ค๋ฆ„์—๋„ encoder-decoder๊ตฌ์กฐ์—์„œ๋Š” ๊ฐ™์€ ๊ธธ์ด์˜ vector๋กœ ๋ฐ”๊ฟ”์•ผ ํ•˜์ฃ . Attention์€ ๊ทธ ๋‹จ์–ด์—์„œ ์•Œ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, sequence data์—์„œ ์ƒํ™ฉ์— ๋”ฐ๋ผ ์–ด๋А ๋ถ€๋ถ„์— ํŠนํžˆ ๋” ์ฃผ๋ชฉ์„ ํ•ด์•ผํ•˜๋Š” ์ง€๋ฅผ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ ์ •๋ณด ์†์‹ค๋„ ์ค„์ด๊ณ  ๋” ์ง๊ด€์ ์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฒ˜์Œ ์ œ์•ˆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ...

1์›” 26, 2019 ยท 3 ๋ถ„ ยท AngryPark